
Languages for Computational Creativity

Generative Art and Interactive Worlds (Full Presentation)

Chris Martens

Carnegie Mellon University

cmartens@cs.cmu.edu

Abstract

I propose that programming language researchers join me
in exploring what our tools have to offer the practice of
programming creativity, i.e. writing programs that aim to
be interesting, surprising, and artful. One incarnation of this
idea is simulation wherein the programmer may describe a
world and multiple agents that interact within it. A next
step is adding interactivity, wherein humans and computers
collaborate to form a creative work or a dialogue, e.g. by the
human participant manually introducing new constraints or
goals into a simulation. In the former setting we are more
interested in the artifact whereas in the latter we are more
interested in the process. Both of these settings ask questions
about knowledge representation and conditional actions, for
which I believe the PL formalisms have been underexplored.

This proposal consists of (1) an argument for using linear
logic to describe generative systems; (2) a discussion of
linear logic’s applicability to describing human interaction;
(3) motivation for looking beyond linear logic for alternative
“action languages.”

1. Generative Media

One role that computation can play in the creation of art is
by generating it systematically. Markov models and context-
free languages have enjoyed wide use as generative gram-
mars for poetry, amusement, and experimentation in addi-
tion to more pragmatic tasks in computational linguistics.
In 1968, Vladimir Propp proposed a grammar for Russian
folktales [4], which researchers have since explored compu-
tationally (e.g. [2]).

A step beyond these simple, stateless “choice tree” mod-
els of generativity lies multiset rewriting systems [1], which
can be embodied and animated by a linear logic program-
ming system. I will sketch how linear logic programming can
be used to generate media.

1.1 Proofs as Stories

The author has been investigating the use of Celf [5], an im-
plementation of linear logic programming, toward generative
media, specifically for generating stories from an establish-
ment of narrative elements such as characters and setting,
along with rules for how those elements may interact.

We can write general rules for how characters may inter-
act with each other in a story world, such as one character
stealing from another:

do/steal
: actor C’ * actor C *

at C L * at C’ L * has C O * wants C’ O
-o {at C L * at C’ L * has C’ O * anger C C’}.

This rule permits a part of the story state represented
by the antecedent (facts before the -o) to be replaced by
the state represented by the succedent (facts after the -o).

Importantly, rules written in this system obey a frame rule,
meaning that whatever else holds true in the story–other
characters’ affections or dislikes for one another, or perhaps
state pertaining to entirely separate storylines–does not
change when the rule is applied.

Using a nondeterministic semantics for rule selection, we
can run this set of rules by querying a final state match-
ing all possible outcomes, and because the system is based
on constructive logic, we wind up with a proof of the query
proposition corresponding to a story generated by the sys-
tem.

Interest in generated stories seems alive and well among
creative programmers, what with the 2013 creation of
NaNoGenMo,1 a spinoff of NaNoWriMo (National Novel
Writing Month) in which participants must programmati-
cally generate 50, 000 words of story.

Reviewers are encouraged to look at a Celf program writ-
ten by the author2 which generates the skeletal structure of
stories atop which one could apply natural-language render-
ing of events toward this end. These skeletons can nonethe-
less be read by a human; sample output for this generator
can be found in the same project repository.3

1.2 Games: Levels, Characters, and Puzzles

Generativity holds particular interest for game designers
who aim to create a sense of rule-based surprise in their
gameplay. Suppose a game consists of levels that take place
on a 2D grid, as do many classics. A designer may lovingly
craft every level by hand; or she may set constraints (e.g.,
which kinds of tiles may go next to each other, or that an exit
must always be reachable) and let a program randomly gen-
erate levels; or she may combine these approaches. Games
in the “roguelike” genre embrace this idea, presenting the
player with entirely randomly generated levels, including
placement of enemies, treasure, and level exits (again, ac-
cording to some constraints).

Apart from level generation, one may want to generate
characters in a roleplaying game or puzzles in a strategy
game. The opportunities for programmatic content genera-
tion in games settings abound.

1.3 Other Media

Finally, traditional media such as poetry, illustration, and
music can be automatically generated using these tech-
niques. The rules–the constraints–that the program author
chooses to codify still represent human choices about the

1 https://github.com/dariusk/NaNoGenMo
2 https://github.com/chrisamaphone/interactive-lp/blob/
master/examples/romeo.clf
3Look at the part beginning with “Iteration 1”: https:
//github.com/chrisamaphone/interactive-lp/blob/master/
examples/romeo.out

1



structure of the composition. For example, a haiku has some
amount of creative choice in terms of specific words and sub-
ject matter, but it also has formal constraints about the syl-
labic content of words. In music, consider the twelve-tone
row, in which every note in a chromatic scale is used once
before repeating any such note, with exceptions for adjacent
notes in the composition.

The French intellectual community known as Oulipo4 fa-
mously created constrained works with mathematical struc-
ture. With compuational approaches to creating and ani-
mating such structures, which programming language re-
searchers have been doing outside of creative domains for
decades, I believe we can only create more dynamic and in-
teresting artworks.

2. Interactive Worlds

Once we have established a rich environment in which pro-
grammed entities may interact, a natural direction to take
(especially in the design of digital games) is to allow the
player to control one or more of these entities. This idea
turns out to be easier to conceive than to implement. For
one thing, at which points in the program’s execution ought
we allow human intervention?

One answer is that we introduce a linear resource at the
beginning of every rule corresponding to a player action.
For this to make sense, we have to decide what counts as an
action. We can modify the previous rule example, replacing
the two actor premises with a specific player action:

do/steal
: player_action(Player, steal_from C O) *

at C L * at Player L * has C O
-o {at C L * at Player L * has Player O * anger C Player}.

Note that we no longer need to codify the motivation
wants Player O as a premise to the rule, since we rely on the
player herself to provide that impetus. The author’s thesis
proposal [3] aims to introduce this form of interactivity into
the Celf system via linguistic mechanisms added around the
scaffolding of linear logic.

Outside the realm of programming languages research lie
systems like the Versu environment for interactive fiction.5

In Versu, characters have interiority (personalities, motiva-
tions, sentiments) that can be exposed through dialogue ac-
tions constrained by other elements of the state. The player
may select any character to control, and she may simply ob-
serve the conversation or interject by choosing from a range
of context-dependent verbalizations. Each scenario in Versu
is at once an open-ended simulation and a carefully-crafted
narrative; the author’s voice emerges from both the partic-
ular rendering of dialogue (to which the underlying system
is agnostic) and the systematic constraints that she has im-
posed on the story.6

In domains other than games, character improvisation
has obvious applications to theater, and Continuing this
thought in the domain of generative music suggests the
possibility of a “jam band” improvisational score that reacts
to the sounds in the environment. And in the games domain,
one could consider the design of levels that would adapt
(either helpfully or adversarially) around the player.

4 http://en.wikipedia.org/wiki/Oulipo
5 http://www.versu.com/
6 http://emshort.wordpress.com/2013/02/26/
versu-conversation-implementation/

3. Action Languages

Despite the idealism permitted by the vagueness of the
previous sections, linear logic does not present an ideal
formalism for describing interaction with generative worlds.
Some common patterns that emerge are:

• Negation. Purely proof-theoretic systems do not easily
account for the negation of formula, i.e. testing for the
absence of a particular fact in the state. One can easily
imagine use cases for such a thing.

• Comprehensive production (broadcast) or con-
sumption. Consider that in a conversation simulation,
we may want a rule that, whenever a character speaks,
causes every character who can hear her to be affected
(e.g. by forming an opinion of the speaker). In linear logic
the natural possibility would be

speaks(C) -o {ForAll x.inEarshot x C -o {formOpinion x C}}.

However, the precise semantics of the universal quan-
tifier in Celf permits only one instantiate for the variable–
and worse, it might apply the rule (by nondeterministic
choice) to a character for whom the inEarshot premise
does not hold.

These patterns emerge commonly enough, and are painful
enough to specify in linear logic-based systems, that I claim
we need to look beyond linear logic for the design of action
languages. Systems with temporal indices such as event
calculus7 may serve as inspiration, though ideally one would
like to preserve the frame property afforded by linear logic
over such systems.

One reason to stay within the domain of strictly proof-
theoretical systems is that they give us a notion of struc-
tural execution trace for free. Such an artifact may be used
for analysis, i.e. for generating visual feedback representing
the structure of actions and their dependencies between each
other. I believe that programming languages researchers, es-
pecially with recent advents in mechanized reasoning, are
uniquely positioned to contribute reasoning tools for pro-
grammatic media.

Artists want to use code in their art, and communities
of such artists have developed their own languages and en-
vironments (such as Processing (http://processing.org/)
and Twine (http://twinery.org/) to fill voids where no
tools existed. Programming languages researchers can help
attend to these needs with our well-established techniques
for building high-level representations and development en-
vironments.

References
[1] Cervesato, I., and Scedrov, A. Relating state-based and

process-based concurrency through linear logic (full-version).
Information and Computation 207, 10 (2009), 1044–1077.

[2] Kakas, A., and Miller, R. A simple declarative language
for describing narratives with actions. Journal of Logic
Programming 31 (1997), 157–200.

[3] Martens, C. Thesis proposal: Logical interactive program-
ming for narrative worlds, 2013.

[4] Propp, V. Morphology of the Folktale. University of Texas
Press, 1968.

[5] Schack-Nielsen, A., and Schürmann, C. Celf — a logical
framework for deductive and concurrent systems (system
description). In Proceedings of the International Joint
Conference on Automated Reasoning (IJCAR’08) (2008),
Springer LNCS 5195, pp. 320–326.

7 http://www.doc.ic.ac.uk/~mpsha/ECExplained.pdf

2


